Abstract
We extend some rate of convergence results of greedy quantization sequences already investigated in 2015. We show, for a more general class of distributions satisfying a certain control, that the quantization error of these sequences has an optimal rate of convergence and that the distortion mismatch property is satisfied. We will give some non-asymptotic Pierce type estimates. The recursive character of greedy vector quantization allows some improvements to the algorithm of computation of these sequences and the implementation of a recursive formula to quantization-based numerical integration. Furthermore, we establish further properties of sub-optimality of greedy quantization sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.