Abstract
Summary A new approach for the synthesis of bio-inspired polymer microcapsules used to encapsulate chemical additives and designed for small molecule release and delivery is shown here. The flexibility to design different microcapsules using an emulsion template results in various encapsulated additives for a new polymer technology platform. The base materials for encapsulation are polyaramids that are highly crosslinked membrane shells around an empty core. These empty capsules provide a carefully designed space to site-isolate chemical additives, various encapsulants for encapsulation, and delivery where needed. These microcapsules have demonstrated that after being formed from a simple one-pot synthesis between two immiscible solutions, a new method for encapsulation for applications in ordinary Portland cement is possible. The final product is a free-flowing solid that can be easily added to any fluid application. Experimental results show that when added to a basic cement slurry design, cement responds to the release of a salt accelerant as measured using standard oilfield equipment, like the pressurized consistometer, which measures changes in viscosity and thickening times. In one of many applications, the consistency of cement remains favorable at 20 Bc after adding encapsulated calcium chloride for up to 5 hours, for example. Over time, various capsules caused cement slurries to set at right angles at various thickening times with the controlled release of encapsulated calcium chloride. This new approach for encapsulation is promising for the chemical and energy field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.