Abstract

We examine the cosmological consequences of an alternative to the standard expression for bulk viscosity, one which was proposed to avoid the propagation of superluminal signals without the necessity of extending the space of variables of the theory. The Friedmann equation is derived for this case, along with an expression for the effective pressure. We find solutions for the evolution of the density of a viscous component, which differs markedly from the case of conventional Eckart theory; our model evolves toward late-time phantom-like behavior with a future singularity. Entropy production is addressed, and some similarities and differences to approaches based on the Mueller-Israel-Stewart theory are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.