Abstract
The Cre-loxP site-specific recombination system was used for cell lineage analysis in mammals. We constructed an expression plasmid, pCETZ-17, which consists of cytomegalovirus enhancer/chicken beta-actin promoter (CAG), a portion of the rabbit beta-globin gene, loxP-flanked DNA sequence (containing enhanced green fluorescent protein (EGFP) cDNA), and lacZ gene encoding E. coli beta-galactosidase (beta-gal). When circular pCETZ-17 plasmid DNA was microinjected into the pronuclei of fertilized eggs and these eggs were allowed to develop to two-cell stage, 62.8% (59/94) of the two-cell embryos exhibited distinct fluorescence in one or both blastomeres, but never expressed lacZ protein, as evaluated by histochemical staining with X-Gal, a substrate for beta-gal. When both circular plasmids, pCETZ-17 and pCAG/NCre (containing CAG and DNA sequences encoding nuclear location signal and Cre), were co-injected into fertilized eggs, almost all (87.0%, 47/54) embryos exhibited low or no fluorescence, but 51.9% (27/52) exhibited positive staining for beta-gal activity. This indicates that transient expression of the Cre recombinase gene removed the loxP-flanked DNA sequence in pCETZ-17 and then caused expression of the downstream lacZ sequence. We next microinjected pCETZ-17 into the pronuclei of fertilized eggs, cultured these injected eggs for 1 day, and collected only two-cell embryos expressing EGFP in both blastomeres. One blastomere of the EGFP-expressing two-cell embryos was microinjected with pCAG/NCre, and these treated embryos were cultured for 1 day up to four-cell stage. When the developing four-cell embryos were subjected to staining with X-Gal, cell lineage-related staining pattern for beta-gal activity was observed in most (77.8%, 7/9) embryos. These findings were further confirmed using two-cell embryos derived from a transgenic mouse line carrying CETZ-17 transgene. Thus, our system, which is based on transient expression of the Cre recombinase gene directly introduced into nuclei of embryonic cells by microinjection, is a powerful means for cell lineage analysis in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.