Abstract

We propose and test a new approach to computation of canonical partition functions in lattice QCD at finite density. We suggest a few steps procedure. We first compute numerically the quark number density for imaginary chemical potential $i\mu_{qI}$. Then we restore the grand canonical partition function for imaginary chemical potential using fitting procedure for the quark number density. Finally we compute the canonical partition functions using high precision numerical Fourier transformation. Additionally we compute the canonical partition functions using known method of the hopping parameter expansion and compare results obtained by two methods in the deconfining as well as in the confining phases. The agreement between two methods indicates the validity of the new method. Our numerical results are obtained in two flavor lattice QCD with clover improved Wilson fermions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call