Abstract
Molybdenum oxide (20 wt. %) supported on nano hydroxyapatite mixed was prepared by impregnation method and calcinated at 400° 500° 600° and 700°C in static air atmosphere. The catalysts were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and nitrogen sorption measurements. The gas-phase oxidation of methanol to formaldehyde was carried out in a conventional fixed flow bed reactor. The obtained results clearly revealed that the formation of CaMoO4 spinel nano particles was active and selective catalyst towards the formation of formaldehyde. The maximum yield of formaldehyde was 97% on the catalyst calcined at 400 ° C. Moreover, the yield of formaldehyde was found unaffected by increasing the calcination temperature up to 700° C.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.