Abstract

Cubic boron nitride (c-BN) can be produced by PVD and PA-CVD techniques by intensive ion bombardment leading to highly stressed films limiting its use in industrial applications. Various attempts have been undertaken to reduce the compressive stress of c-BN thin films. A significant reduction in compressive stress and a substantially improved adhesion was achieved by a new coating concept consisting of a two-step adhesion-promoting base layer, a compositional-graded nucleation layer obtained by a stepwise decrease of the oxygen content in the Ar/N 2/O 2 atmosphere and a low-stressed c-BN:O top layer with controlled oxygen addition. The four-layer c-BN:O film with a thickness of 3 μm was deposited by unbalanced radio frequency magnetron sputtering of a hot-pressed hexagonal boron nitride target on silicon substrates. The adhesion layer was deposited in a mixed Ar/O 2 atmosphere of 0.26 Pa with a stepwise increased nitrogen gas flow and a subsequent increase of the ion energy by increasing the substrate bias from 0 to − 250 V. The c-BN nucleation was gradually initiated by decreasing the O 2 gas flow. The present study was focused on the investigation of the morphology, the microstructure on the nanoscale, and the bonding structure using scanning electron microscopy (SEM), Fourier-Transmission infra-red spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) employing analytical scanning transmission electron microscopy (ASTEM). The HRTEM images revealed a four-layer coating consisting of a gradual nucleation of t-BN, on which a gradual nucleation of c-BN was achieved by decreasing the oxygen gas flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.