Abstract

A novel approach for seismic nonlinear analysis of inelastic framed structures is presented in this paper. The nonlinear analysis refers to the evaluation of structural response considering P -delta effect, which is in the form of geometric nonlinearity, and inelastic behavior refers to material nonlinearity. This novel approach uses finite element formulation to derive the elemental stiffness matrices, particularly to derive the geometric stiffness matrix in a general form. At the same time, this approach separates the inelastic displacement from total deflection of the structure by applying two additional constant matrices, namely, the force–recovery matrix and the moment-restoring matrix in the force analogy method. The benefit behind this treatment is explicitly locating and calculating the inelastic response, together with strategically separating the coupling effect between the material nonlinearity and geometric nonlinearity, during the time history analysis. Comparison with the traditional increme...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.