Abstract
A general class of nonseparable dynamic problems is studied in a dynamic programming framework by introducingkth-order separability. The solution approach uses multiobjective dynamic programming as a separation strategy forkth-order separable dynamic problems. The theoretical grounding on which the optimal solution of the original nonseparable dynamic problem can be attained by a noninferior solution of the corresponding multiobjective dynamic programming problem is established. The relationship between the overall optimal Lagrangian multipliers and the stage-optimal Lagrangian multipliers and the relationship between the overall weighting vector and the stage weighting vector are explored, providing the basis for identifying the optimal solution of the original nonseparable problem from among the set of noninferior solutions generated by the envelope approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.