Abstract

Due to concerns with corrosion, the use of fiber-reinforced polymer (FRP) as a replacement to conventional steel reinforcement has greatly increased over the last decade. Researchers have identified the distinctive mechanical and bond properties of FRP reinforcement that prevent the use of existing relationships to establish serviceability of concrete structures reinforced with such products. Although studies have modified these empirical relationships to describe the behavior of structures reinforced with FRP reinforcement, this paper will provide a new approach to estimate deflection of concrete beams by considering material properties of the reinforcement and incorporating the effects of tension stiffening. Accuracy and precision of the approach was established by performing a statistical analysis on a database containing 171 FRP-reinforced concrete beams. Results were compared to those from existing proposed relationships and indicate the potential of the method to estimate deflection at various service conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.