Abstract

In this paper, we investigate coded layered space-time architectures for frequency-selective fading multiple-input multiple-output orthogonal frequency-division multiplexing (OFDM) channels. By computing outage capacity formulas, we will show that the capacity of the vertical Bell Labs layered space-time (V-BLAST) architecture can closely approach the Shannon capacity in the frequency-selective OFDM environment. Motivated by the capacity analysis, we propose pragmatic approaches which preserve the optimality of the layered space-time concept. We present methods to prevent the error propagation from catastrophically affecting the signal detection in subsequent layers. First, we start with a comprehensive signal modeling which includes error propagation. We derive an improved signal detector and describe the optimal soft-bit log-likelihood ratio value-computation method by taking decision errors into account for soft-input channel decoding. Then, to further enhance the V-BLAST performance, we show that cancellation using decoded decisions from previous layers makes the decision errors almost completely disappear, so that the layered space-time architecture can approach the attainable channel capacity. Finally, simulations confirm that the proposed schemes show a significant performance improvement over the conventional methods

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call