Abstract

In this paper, we present some new applications of the bounds for the differential probability of a SDS (Substitution-Diffusion-Substitution) structure by Park et al. at FSE 2003. Park et al. have applied their result on the AES cipher which uses the SDS structure based on MDS matrices. We shall apply their result to practical ciphers that use SDS structures based on {0,1}-matrices of size n×n. These structures are useful because they can be efficiently implemented in hardware. We prove a bound on {0,1}-matrices to show that they cannot be MDS and are almost-MDS only when n= 2,3, or 4. Thus we have to apply Park's result whenever {0,1}-matrices where ni¾? 5 are used because previous results only hold for MDS and almost-MDS diffusion matrices. Based on our bound, we also show that the {0,1}-matrices used in E2, Camellia, and MCrypton are optimal or almost-optimal among {0,1}-matrices. Using Park's result, we prove differential bounds for the E2 and MCrypton ciphers, from which we can deduce their security against boomerang attack and some of its variants. At ICCSA 2006, Khoo and Heng constructed block cipher-based universal hash functions, from which they derived Message Authentication Codes (MACs) which are faster than CBC-MAC. Park's result provides us with the means to obtain a more accurate bound for their universal hash function. With this bound, we can restrict the number of MAC's performed before a change of MAC key is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.