Abstract
Microbial fuel cells (MFCs) are a promising technology that can be applied in a bifunctional process in which wastewater treatment is used for renewable electric power generation. In this study, novel transition metal-modified Keggin-type lacunar polyoxometalate salts (L-POMs) Cs5PMo11M(H2O)O39 (M = Fe, Co), were synthesized and characterized by X-ray diffraction, SEM, EDX, IR, TGA/DSC, and UV-Vis/DSR spectroscopies to be tested, for the first time, as a cathode component in wastewater-fed air chamber MFCs. Both materials were tested in the presence and absence of light to evaluate their photocatalytic behavior. The best performance in terms of electricity production was obtained for the MFC containing the Co-modified POM-based cathode, which showed a maximum power of 418.15 mW/m2 equivalent to 331 mW per cubic meter of treated wastewater, and a maximum COD removal percentage of 97% after 96 h of MFC operation. Co- and Fe-modified POMs had outstanding optical behavior with lower energy gap values, 1.71 and 2.68 eV, respectively. The newly developed materials can be considered as promising alternative cathode catalysts in a new generation of MFC devices integrating full carbon removal from wastewater and a fast reduction of oxygen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Processes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.