Abstract

AbstractThe growth of central Tibet remains elusory, albeit important in evaluating different topographic growth models accounting for the Tibetan Plateau development. Thermochronological records in the northern Qiangtang terrane (QT) provide valuable information for investigating the cooling and exhumation history in central Tibet. New apatite fission track data, assisted by inverse thermal modelling, reveal two stages of accelerated cooling. The Early Cretaceous cooling is related with refrigeration of the QT and exhumation probably induced by crustal shortening. The Eocene‐Oligocene renewed cooling reflects the far‐field contraction after the onset of the India‐Asia collision and Cenozoic crustal shortening deformation in the QT, coupled with thermal relaxation and transient lithospheric removal. Our data support models indicating that Cretaceous crustal shortening produced a thickened crust in the QT, whereas the present‐day elevation was established during Eocene‐Oligocene due to crustal shortening, continental subduction and lithospheric delamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call