Abstract

Chemical modifications of the anthraquinone scaffold are aimed at optimization of this exceptionally productive class of antitumor drugs. In particular, our previously reported anthra[2,3-b]furan-3-carboxamides demonstrated a high cytotoxic potency in cell culture and in vivo. In this study, we expanded our series of anthra[2,3-b]furan-3-carboxamides by modifying the key functional groups and dissected the structure-activity relationship within this chemotype. The majority of new compounds inhibited the growth of mammalian tumor cell lines at submicromolar to low micromolar concentrations. We found that 4,11-hydroxy groups as well as the carbonyl moiety in the carboxamide fragment were critical for cytotoxicity whereas the substituent at the 2-position of anthra[2,3-b]furan was not. Importantly, the new derivatives were similarly potent against wild type cells and their variants resistant to doxorubicin due to P-glycoprotein (Pgp) expression or p53 inactivation. The most cytotoxic derivatives 6 and 9 attenuated plasmid DNA relaxation by topoisomerase 1. Finally, we demonstrated that 6 and 9 at 1 μM induced intracellular oxidative stress, accumulation in G2/M phase of the cell cycle, and apoptosis in gastric carcinoma cell lines regardless of their p53 status. These results further substantiate the potential of anthra[2,3-b]furan-3-carboxamides as antitumor drug candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call