Abstract

It is shown that when the mass matrix changes in orientation (i.e. rotates) in generation space for a changing energy scale, the masses of the lower generations are not given just by its eigenvalues. In particular, these masses need not be zero even when the eigenvalues are zero. In that case, the strong CP problem can be avoided by removing the unwanted θ term by a chiral transformation not in contradiction with the nonvanishing quark masses experimentally observed. Similarly, a rotating mass matrix may shed new light on the problem of chiral symmetry breaking. That the fermion mass matrix may so rotate with the scale has been suggested before as a possible explanation for up–down fermion mixing and fermion mass hierarchy, giving results in good agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call