Abstract

<abstract><p>Using the unified solver technique, the rigorous and effective new novel optical progressive and stationary structures are established in the aspects of hyperbolic, trigonometric, rational, periodical and explosive types. These types are concrete in the stochastic nonlinear Schrödinger equations (NLSEs) with operative physical parameters. The obtained stochastic solutions with random parameters that are founded in the form of rational, dissipative, explosive, envelope, periodic, and localized soliton can be utilized in fiber applications. The stochastic modulations of structures' amplitude and frequency caused by dramatic instantaneous influences of both fibers nonlinear, dispersive, losing and noise term effects maybe very important in new fiber communications.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call