Abstract
New analytical wake models are derived from the soft computing technique, called Genetic Programming (GP) to predict wake velocities and turbulence intensity. The design of the wind farm’s appropriate layout is essential for minimizing cost and maximizing the wind farm power generation. This needs a precise wake velocity model to simulate the wake effect of the wind farm within a limited time duration. Furthermore, prediction of turbulence in the wake due to ambient flow and rotor-generated is extremely crucial owing to its contribution to fatigue loads and structural failures of the downstream wind turbines. This article discusses the classical to the recent analytical wake velocity and turbulence intensity models derived based on hard computing techniques in detail and their limitations. The significant constraints are the consideration of uniform inflow without integrating Atmospheric Boundary Layer (ABL) impacts for the forecast of wake velocity and estimation of single value of turbulence intensity while it radially varies at distinct downstream distances of the wind turbine. Eventually, these constraints are tackled and new analytical models for wake velocity and turbulence intensity profiles are formulated for both uniform and ABL inflows. The existing and proposed models are compared with the previous NREL Phase VI wind turbine CFD study for uniform and ABL inflows and it was observed that the proposed models are precise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.