Abstract

We present new analytical approach to the problem of energy pumping in strongly non- homogeneous nonlinear two-degree-of-freedom (2DOF) systems with single anchor spring under condition of initial impact. Energy pumping is a passive, almost irreversible transfer of mechanical energy from the main substructure of the system to the light auxiliary attachment. The mechanism of energy pumping in the system under consideration is a resonance capture. The approach is based on application of Laplace transformation to the principal asymptotic approximation of the equations of motion in complex form and using the power expansion of the solution in terms of time. Obtained temporal dependence of the system energetic characteristics gives a tool for estimation of energy pumping efficiency. In particular, we show that the system without an anchor spring in attachment is more efficient than the system with such a spring. Numerical simulations confirm the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call