Abstract
A new analysis of the Doppler tracking data from the Lunar Prospector mission in 1999 revealed a number of previously-unseen gravity anomalies at spatial scales as small as 27 km over the nearside. The tracking data at low altitudes (50 km or below) were better analyzed to resolve the nearside features without dampening from a power law constraint, by partitioning the gravity parameters concentrated on either the nearside or farside. The resulting model presents gravity anomalies correlated with topography with a correlation coefficient of 0.7 or higher from degree 50 to 150, the widest bandwidth yet. The gravity-topography admittance of ∼70 mGal/km is found from numerous craters of which diameters are 60 km or less. In addition, the new model produces orbits that fit to independent radio tracking data from the Lunar Reconnaissance Orbiter and Kaguya (SELENE) better than previous gravity models. This high-resolution model can be of immediate use to geophysical analysis of small craters. Our technique could be applied to an upcoming mission, the Gravity Recovery And Interior Laboratory and useful to extract short wavelength signals from the MESSENGER Doppler data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.