Abstract

Metal chalcogenides are a promising material for novel physical research and nanoelectronic device applications. Here, we systematically investigate the crystal structure and electronic properties of AlSe alloys on Al(111) using scanning tunneling microscopy, angle-resolved photoelectron spectrometry, and first-principle calculations. We reveal that the AlSe surface alloy possesses a closed-packed atomic structure. The AlSe surface alloy comprises two atomic sublayers (Se sublayer and Al sublayer) with a height difference of 1.16 Å. Our results indicate that the AlSe alloy hosts two hole-like bands, which are mainly derived from the in-plane orbital of AlSe (p x and p y ). These two bands located at about -2.22 ±0.01 eV around the Gamma point, far below the Fermi level, distinguished from other metal chalcogenides and binary alloys. AlSe alloys have the advantages of large-scale atomic flat terraces and a wide band gap, appropriate to serve as an interface layer for two-dimensional materials. Meanwhile, our results provide implications for related Al-chalcogen interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call