Abstract

Generalized disjunctive programming (GDP) has been introduced recently as an alternative model to MINLP for representing discrete/continuous optimization problems. The basic idea of GDP consists of representing discrete decisions in the continuous space with disjunctions, and constraints in the discrete space with logic propositions. In this paper, we describe a new convex nonlinear relaxation of the nonlinear GDP problem that relies on the use of the convex hull of each of the disjunctions involving nonlinear inequalities. The proposed nonlinear relaxation is used to reformulate the GDP problem as a tight MINLP problem, and for deriving a branch and bound method. Properties of these methods are given, and the relation of this method with the logic based outer-approximation method is established. Numerical results are presented for problems in jobshop scheduling, synthesis of process networks, optimal positioning of new products and batch process design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.