Abstract

Gene regulatory networks (GRNs) are crucial to understand the inner workings of the cell and the complexity of gene interactions. Numerous algorithms have been developed to infer GRNs from gene expression data. As the number of identified genes increases and the complexity of their interactions is uncovered, gene networks become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to analyse copious amounts of experimental data from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here we present two new algorithms for reverse engineering GRNs in a cloud environment. The algorithms, implemented in Spark, employ an information-theoretic approach to infer GRNs from time-series gene expression data. Experimental results show that one of our new algorithms is faster than, yet as accurate as, two existing cloud-based GRN inference methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.