Abstract
A constrained minimax problem is converted to minimization of a sequence of unconstrained and continuously differentiable functions in a manner similar to Morrison's method for constrained optimization. One can thus apply any efficient gradient minimization technique to do the unconstrained minimization at each step of the sequence. Based on this approach, two algorithms are proposed, where the first one is simpler to program, and the second one is faster in general. To show the efficiency of the algorithms even for unconstrained problems, examples are taken to compare the two algorithms with recent methods in the literature. It is found that the second algorithm converges faster with respect to the other methods. Several constrained examples are also tried and the results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.