Abstract

AbstractPerturbations to the global carbon cycle as recorded in the isotopic compositions of marine deposits have been commonly associated with major shifts in the climate and/or biologic activity, including mass extinctions. The Late Ordovician Guttenberg isotopic carbon excursion (GICE) is a large, globally correlative positive shift (∼3‰) in the carbon isotopic composition of marine carbonates (δ13Ccarb), but its driving mechanism(s) remains ambiguous. This is in large part due to uncertain correlations among Late Ordovician records, as well as complex and poorly constrained temporal relationships of abundant K-bentonite (altered volcanic ash) marker beds deposited in this time interval. Here, we provide new, high-precision U-Pb zircon geochronology by chemical-abrasion–isotope-dilution–thermal ionization mass spectrometry for K-bentonites bounding the GICE in the North American Midcontinent, including robust 206Pb/238U ages (reported with 2σ analytical uncertainty) for two important regional markers: the Deicke (453.35 ± 0.10 Ma) and Millbrig (453.36 ± 0.14 Ma) K-bentonites. The new data from these K-bentonites directly constrain the duration of the GICE to less than 400 k.y. at two well-studied locations in eastern Missouri, United States. The abruptness of the GICE precludes relatively gradual tectonic mechanisms as possible drivers of the excursion and suggests more rapid environmental drivers, such as changes in eustatic sea level associated with pre-Hirnantian glacial activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.