Abstract

Thermotectonic history of the Trans-Himalayan Ladakh Batholith in the Kargil area, N. W. India, is inferred from new age data obtained here in conjunction with previously published ages. Fission-track (FT) ages on apatite fall around 20±2 Ma recording cooling through temperatures of ∼100°C and indicating an unroofing of 4 km of the Ladakh Range since the Early Miocene. Coexisting apatite and zircon FT ages from two samples in Kargil show the rocks to have cooled at an average rate of 5–6°C/Ma in the past 40 Ma. Zircon FT ages together with mica K−Ar cooling ages from the Ladakh Batholith cluster around 40–50 Ma, probably indicating an Eocene phase of uplift and erosion that affected the bulk of the batholith after the continental collision of India with the Ladakh arc at 55 Ma. Components of the granitoids in Upper Eocene-Lower Oligocene sediments of the Indus Molasse in Ladakh supports this idea. Three hornblende K−Ar ages of 90 Ma, 55 Ma, and 35 Ma are also reported; these distinctly different ages probably reflect cooling through 500–550°C of three phases of I-type plutonism in Ladakh also evidenced by other available radiometric data: 102 Ma (mid-Cretaceous), 60 Ma (Palaeocene), and 40 Ma (Late Eocene); the last phase being localised sheet injections. The geodynamic implications of the age data for the India-Asia collision are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.