Abstract

The vasopressin-regulated urea transporter UT-A1, expressed in kidney inner medullary collecting duct (IMCD) epithelial cells, plays a critical role in the urinary concentrating mechanisms. As a membrane protein, the function of UT-A1 transport activity relies on its presence in the plasma membrane. Therefore, UT-A1 successfully trafficking to the apical membrane of the polarized epithelial cells is crucial for the regulation of urea transport. This review summarizes the research progress of UT-A1 regulation over the past few years, specifically on the regulation of UT-A1 membrane trafficking by lipid rafts, N-linked glycosylation and a group of accessory proteins.

Highlights

  • Urea is the major end product of amino acid metabolism

  • The vasopressin-mediated urea transporter (UT)-A1 trafficking to the plasma membrane is crucial for the regulation of UT-A1 activity

  • It may share some common mechanisms of protein membrane trafficking, recent studies reveal that UT-A1 trafficking may have its own unique regulation

Read more

Summary

Introduction

Urea is the major end product of amino acid metabolism. It is generated from the ornithine cycle in liver, and is excreted by the kidney representing 90% of total nitrogen in urine. Urea reabsorbed in the kidney inner medullary collecting duct (IMCD) contributes to the development of the osmolality in the medullary interstitium. The osmotic gradient, along the corticomedullary axis in the kidney, allows the water and important solutes to be reabsorbed from the renal tubules back into the interstitium and, thereby, generates concentrated urine. UT-A1 is the largest protein isoform and is expressed in the apical plasma membrane of the IMCD [5]. Vasopressin increases kidney urea transport activity by increasing UT-A1 in the apical plasma membrane [10] and UT-A1 phosphorylation [8,11]. Like all transporters at the plasma membrane, UT-A1 function is highly dependent on its membrane trafficking and recent discoveries indicate that lipid rafts, N-linked glycosylation and interacting proteins (such as caveolin, snapin and actin) play key roles in this process

Role of Lipid Rafts
Role of N-Glycosylation
Role of Accessory Proteins
Caveolin
Snapin
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.