Abstract

Co-crystallization of 4-nitrophenol (I) with five aminopyridines (4-aminopyridine 1, 3,4-diaminopyridine 2, 2,3-diaminopyridine 3, 3-aminopyridine 4, 2-amino-6-methylpyridine 5) and 2,4-diaminopyrimidine 6 resulted in six adducts with the ratio of components 2 : 1 in five and 1 : 1 in one final compounds. Single crystals were grown by slow evaporation technique using ethanol as a solvent. Five adducts with 1–5 crystallize in acentric P21 and Pna21 space groups, and one, 2(I)·6 – in centrosymmetric P21/c space group. Compounds 2(I)·1, 2(I)·2, 2(I)·3 are isomorphous, and demonstrate similar H-bonding patterns despite the differences in aminopyridine molecules. Compound 2(I)·5 is isomorphous to two previously reported compounds. Adducts 2(I)·1, 2(I)·2, 2(I)·3, 2(I)·5, 2(I)·6 represent organic salts composed of pyridinium/pyrimidinium cation, 4-nitrophenolate anion, and 4-nitrophenol neutral molecule. The H-bonded 4-nitrophenol–4-nitrophenolate anionic dimers were found in all compounds with 2 : 1 molar ratio. In adduct I·4 both molecules are in neutral form. The IR spectral data support crystallographic conclusions on salts formation. Plane wave pseudopotential density functional theory calculations were used to predict hyperpolarizability tensor components. Our calculations suggest 2(I)·3 as the best candidate for nonlinear optical materials (14 times more active than urea).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.