Abstract

This paper is concerned with the problem of absolute stability of time-delay Lur'e systems with sector-bounded nonlinearity. Several novel criteria are presented by using a Lur'e–Postnikov function. For a general Lur'e system with known time delay, the absolute stability of it is analyzed by solving a set of linear matrix inequalities (LMIs). The maximum upper bound of the allowable time delay for a general Lur'e system is derived by solving a convex optimization problem. The feasibility of the LMIs implies some frequency-domain interpretations which are similar to the frequency-domain inequalities in the circle criterion and the Popov criterion. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call