Abstract
Four new hexadendate chelators, three hydroxyquinoline-based, Csox, O-Trensox, Cox750, and one catecholate-based CacCam—which have comparable skeletal structures and pFe, but widely different partition coefficients, (Kpart), 0.01, 0.02, 1 and 3.2 respectively, have been tested for their iron chelating efficacy in vitro by two methods. First, by their ability to remove iron from ferritin in solution or second, to remove iron from iron-loaded hepatocytes in vitro. Our objective was to ascertain the importance of Kpart and pFe, on the biological efficiency of the molecule. Previous studies proposed that an ideal value of Kpart of 1 should give maximum biological activity. Mobilization of iron by Csox and CacCAM from ferritin was similar and furthermore more efficient than desferrioxamine B. In the iron-loaded hepatocyte cultures, the three hydroxyquinoline chelators, although showing diversity in terms of lipophilicity, appeared to be very similar in their capacity to chelate iron. CacCAM, the unique catecholate, was the most efficient of the molecules tested, as well as being the least toxic in the cellular model despite having the lowest value of pFe. In conclusion, the use of the partition coefficient and pFe, as tools for predicting biological activity of iron chelators should be not generalized. Further studies are required in order to understand the influence of the structure on the biological activity of the molecule.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.