Abstract

1,2,3-Triazole compounds (1a–3a) and their oxime derivatives (1b–3b) were synthesized. The structures of these synthesized compounds were characterized using common spectroscopic methods. Crystal structures of the compounds 3, 2b and 3b were determined by single crystal X-ray diffraction studies. The acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) cholinesterase inhibitor (ChEI) and DNA/calf serum albumin (BSA) binding properties of the compounds were examined. DNA binding studies have shown that compounds interact with DNA through 1,2,3-triazole and oxime groups. When the binding constant K b values were compared, it was revealed that compound 3b (K b = 4.6 × 105 M−1) with oxime in its structure binds more strongly than the others. In addition, in vitro BSA binding studies showed that compounds 1b and 3b exhibited higher binding affinity. These results confirm that the quenching is due to the formation of a compound resulting from the static quenching mechanism, rather than being initiated by a dynamic mechanism. Likewise, when the enzyme activity of the compounds was examined, the compounds exhibited high inhibitory activity against AChE. The highest activity was observed for compounds 2b and 3b (8.6 ± 0.05 and 4.8 ± 0.052 µM). It was observed that the compounds were not selective with respect to BChE. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.