Abstract

Background and Objective: The top approach to deliver poorly soluble drugs is the use of a highly soluble form. The present study was conducted to enhance the solubility and dissolution of a poorly aqueous soluble drug nevirapine via a pharmaceutical cocrystal. Another objective of the study was to check the potential of the nevirapine cocrystal in the dosage form. Methods: A neat and liquid assisted grinding method was employed to prepare nevirapine cocrystals in a 1:1 and 1:2 stoichiometric ratio of drug:coformer by screening various coformers. The prepared cocrystals were preliminary investigated for melting point and saturation solubility. The selected cocrystal was further confirmed by Infrared Spectroscopy (IR), Differential Scanning Calorimetry (DSC), and Xray Powder Diffraction (XRPD). Further, the cocrystal was subjected to in vitro dissolution study and formulation development. Results: The cocrystal of Nevirapine (NVP) with Para-Amino Benzoic Acid (PABA) coformer prepared by neat grinding in 1:2 ratio exhibited greater solubility. The shifts in IR absorption bands, alterations in DSC thermogram, and distinct XRPD pattern showed the formation of the NVP-PABA cocrystal. Dissolution of NVP-PABA cocrystal enhanced by 38% in 0.1N HCl. Immediate release tablets of NVP-PABA cocrystal exhibited better drug release and less disintegration time. Conclusion: A remarkable increase in the solubility and dissolution of NVP was obtained through the cocrystal with PABA. The cocrystal also showed great potential in the dosage form which may provide future direction for other drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.