Abstract

Steroid hormones mediate a wide variety of developmental and physiological events in multicellular organisms. During larval and pupal stages of insects, the principal steroid hormone is ecdysone, which is synthesized in the prothoracic gland (PG) and plays a central role in the control of development. Although many studies have revealed the biochemical features of ecdysone synthesis in the PG, many aspects of this pathway have remained unclear at the molecular level. We describe the neverland (nvd) gene, which encodes an oxygenase-like protein with a Rieske electron carrier domain, from the silkworm Bombyx mori and the fruitfly Drosophila melanogaster. nvd is expressed specifically in tissues that synthesize ecdysone, such as the PG. We also show that loss of nvd function in the PG causes arrest of both molting and growth during Drosophila development. Furthermore, the phenotype is rescued by application of 20-hydroxyecdysone or the precursor 7-dehydrocholesterol. Given that the nvd family is evolutionally conserved, these results suggest that Nvd is an essential regulator of cholesterol metabolism or trafficking in steroid synthesis across animal phyla.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.