Abstract
This paper introduces the concept of the neutrosophic Laplace distribution ( ), a probability distribution derived from the Laplace distribution. The offers a versatile framework for describing various real-world problems. We highlight the neutrosophic extension of the Laplace distribution and explore its applications in different areas. Extensive investigations into the mathematical properties of the distribution are presented, including the derivation of its probability density function, mean, variance, raw moment, skewness, and kurtosis. To estimate the parameters of the , we employ the method of maximum likelihood (ML) estimation within a neutrosophic environment. Furthermore, we conduct a simulation study to assess the effectiveness of the maximum likelihood approach in estimating the parameters of this new distribution. The findings demonstrate the potential of the in modeling and analyzing real-world phenomena. Eventually, some illustrative examples related to system reliability are provided to clarify further the implementation of the neutrosophic probabilistic model in real-world problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.