Abstract

Induction of mucosal IgA capable of providing a first line of defense against bacterial and viral pathogens remains a major goal of needle-free vaccines given via mucosal routes. Innate immune cells are known to play a central role in induction of IgA responses by mucosal vaccines, but the relative contribution of myeloid cell subsets to these responses has not firmly been established. Using an in vivo model of sublingual vaccination with Bacillus anthracis edema toxin (EdTx) as adjuvant, we examined the role of myeloid cell subsets for mucosal secretory IgA responses. Sublingual immunization of wild-type mice resulted in a transient increase of neutrophils in sublingual tissues and cervical lymph nodes. These mice later developed Ag-specific serum IgG responses, but not serum or mucosal IgA. Interestingly, EdTx failed to increase neutrophils in sublingual tissues of IKKβΔMye mice, and these mice developed IgA responses. Partial depletion of neutrophils before immunization of wild-type mice allowed the development of both mucosal and serum IgA responses. Finally, co-culture of B cells with neutrophils from either wild-type or IKKβΔMye mice suppressed production of IgA, but not IgM or IgG. These results identify a new role for neutrophils as negative regulators of IgA responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call