Abstract

RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics.

Highlights

  • Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level

  • Our results demonstrate that both primary human neutrophils and immortalized differentiated HL-60 (dHL-60) cells express the RNA receptors TLR8, RIG-I, and MDA-5 at the mRNA and protein levels

  • These studies further demonstrate that both RIG-like helicases (RLHs) RIG-I and MDA-5 are stored in secretory vesicles in neutrophils, suggesting that circulating granulocytes carry an intracellular reservoir of RNA receptors, reminiscent of other vesicle-stored receptors, such as CR1/CD35, Mac-1, CD13, and CD16

Read more

Summary

Background

We analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Another study showed that neutrophils express RNA receptors of the RLH family and are capable of responding to intracellularly delivered poly(I:C), suggesting that neutrophils could recognize viral RNA through helicases and may play a role in antiviral immunity [21]. Aside from these studies, the expression, subcellular localization, and functionality of RNA receptors in primary neutrophils and immortalized neutrophil-like differentiated HL-60 (dHL-60) cells are still poorly defined

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call