Abstract

A species of Dechloromonas, strain UWNR4, was isolated from a nitrate-reducing, enrichment culture obtained from Wisconsin River (USA) sediments. This strain was characterized for anaerobic oxidation of both aqueous and chelated Fe(II) coupled to nitrate reduction at circumneutral pH. Dechloromonas sp. UWNR4 was incubated in anoxic batch reactors in a defined medium containing 4.5-5 mM NO3 (-), 6 mM Fe(2+) and 1-1.8 mM acetate. Strain UWNR4 efficiently oxidized Fe(2+) with 90 % oxidation of Fe(2+) after 3 days of incubation. However, oxidation of Fe(2+) resulted in Fe(III)-hydroxide-encrusted cells and loss of metabolic activity, suggested by inability of the cells to utilize further additions of acetate. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced and further additions of acetate and Fe(II)-EDTA could be oxidized. Although members of the genus Dechloromonas are primarily known as perchlorate and nitrate reducers, our findings suggest that some species could be members of microbial communities influencing iron redox cycling in anoxic, freshwater sediments. Our work using Fe(II)-EDTA also demonstrates that Fe(II) oxidation was microbially catalyzed rather than a result of abiotic oxidation by biogenic NO2 (-).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call