Abstract

Alveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

Highlights

  • The oral pathogen Tannerella forsythia and its cohabiting partner Porphyromonas gingivalis have been implicated in periodontitis, a polymicrobial disease that often leads to tooth loss in adults

  • The results showed that the ED1-primed group (ED1: P. gingivalis alone (Pg)) exhibited significantly higher levels of the complex role of IL-17 (Th17) cells in cervical lymph nodes (cLNs) compared to all other groups (Fig. 3)

  • The level of neutrophil infiltration in each group paralleled the Th17 responses in the bacterial infected groups. Together these results indicated that mice primed with ED1 develop a sustained Th17-mediated neutrophil response which is not perturbed by P. gingivalis challenge (ED1:Pg)

Read more

Summary

Introduction

The oral pathogen Tannerella forsythia and its cohabiting partner Porphyromonas gingivalis have been implicated in periodontitis, a polymicrobial disease that often leads to tooth loss in adults. These bacteria form biofilms in subgingival crevices (spaces between the gums and teeth) and instigate inflammatory responses destructive to the tooth supporting structures. In order to colonize and persist in the host environment, pathogens have constantly evolved strategies to modulate the innate as well as the adaptive immunity of the host In this regard, the periodontal pathogen T. forsythia induce the development of Th2 responses, resulting in inflammatory alveolar bone loss [6]. Our results demonstrate that oral inoculation with a Th17-biasing T. forsythia strain is able to confer protection against P. gingivalis colonization and associated alveolar bone loss

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.