Abstract
Neutrophil-mediated degradation of bronchial matrix has been proposed as a pathogenetic factor in bronchiectasis. We hypothesize that neutrophils, found in abundance in the bronchial lumens of patients with bronchiectasis, are capable of degrading lung matrix proteoglycans and that proinflammatory mediators in bronchial secretions of these patients can enhance the degradative action of neutrophils. We used rat bronchoalveolar proteoglycans entrapped in polyacrylamide gel beads as a substrate for test incubations with neutrophils from healthy volunteers and sputum sol from patients with idiopathic bronchiectasis. Coincubations with specimens of sputum sol and neutrophils showed proteoglycan degradation indices (PDIs) in excess of the sum of indices due to incubation with either heat-inactivated sputum sol or heat-inactivated neutrophils, suggesting sputum stimulation of the neutrophil response. Mediation of this stimulation by tumor necrosis factor (TNF)-alpha was suggested because (1) indices for the coincubations correlated with sputum levels of TNF-alpha and (2) an anti-TNF-alpha antibody completely attenuated the sputum-stimulated effect. Furthermore, recombinant human TNF-alpha required accompanying sputum sol to exert an enhancing effect on neutrophil-mediated proteoglycan degradation. Because neutrophil-mediated proteoglycan degradation in the coincubations was inhibited largely (90%) by Eglin C and much less so (8% to 20%) by ethylenediamine tetraacetic acid, we conclude that serine proteases secreted by neutrophils were mainly responsible for degradation of proteoglycans in the model matrix and that the secretion was stimulated by TNF-alpha in the presence of cofactors in the bronchial secretions of patients with bronchiectasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory and Critical Care Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.