Abstract

Neutrophils phagocyte necrotic debris and release cytokines, enzymes, and oxidative factors. In the present study, we investigated the contribution of neutrophils to muscle injury, dysfunction, and recovery using an unloading and reloading model. Mice were submitted to 10 days of hindlimb unloading and were transiently depleted in neutrophils with anti-Ly6G/Ly6C antibody prior to reloading. Leukocyte accumulation and muscle function were assessed immunohistologically and functionally in vitro. In addition, soleus muscles submitted to unloading and reloading were incubated in vitro with LPS (100 microg/ml) to determine whether exogenous stimulus would activate neutrophil response and produce extensive muscle damage. Contractile properties were recorded every hour for 6 h, and muscles were subsequently incubated in procion orange to assess muscle damage. Neutrophil depletion affected neither the loss in muscle force nor the time of recovery in atrophied and reloaded soleus muscles. However, atrophied and reloaded soleus muscles that contained high concentration of neutrophils experienced a 20% greater loss in force than atrophied and reloaded soleus muscles depleted in neutrophils following in vitro incubation with LPS. Procion orange dye also confirmed that neutrophils induced a 2.5-fold increase in muscle membrane damage in the presence of LPS. These results show that neutrophil infiltration during modified mechanical loading is highly regulated and efficiently eliminated, with no significant muscle fiber injury unless the activation state of neutrophils is modified by the presence of LPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.