Abstract

ObjectivesTo investigate the effects of neutrophil extracellular traps (NETs) on angiogenesis in vitro and in vivo and the regulatory role of mammalian target of rapamycin (mTOR) activity in it. MethodsThe regulatory role of mTOR in NETs formation was explored. In vitro, human neutrophils were pretreated with rapamycin. NETs formation was measured using immunofluorescence staining of NETs markers, SYTOX Green and PicoGreen after NaOH stimulation. In vivo, mice were treated with rapamycin, and NETs formation in cornea was measured using immunofluorescence staining 7 days after alkali burn. Then, the effects of NETs on angiogenesis were investigated. In vitro, human neutrophils were treated with DNase I or rapamycin. NETs were isolated after NaOH stimulation and the isolated NETs were co-culture with human umbilical vein endothelial cells (HUVECs). HUVECs migration, proliferation, and inflammatory activation were measured. In vivo, mice were injected subconjunctivally with supernatant containing NETs. Corneal neovascularization was visualized by immunofluorescence staining. ResultsNETs structures can be observed in NaOH-stimulated neutrophils and alkali-burned mouse cornea compared with normal group. Treated with rapamycin enhanced NETs formation in response to NaOH management compared with DMSO control in vitro and in vivo. NETs increased the migration, proliferation and inflammatory activation of HUVECs, and subconjunctival injection of NETs promoted inflammatory and angiogenic response in corneal alkali burn model. ConclusionsNETs formation can be triggered by NaOH stimulation. mTOR activity has a negative regulatory effect on NETs formation. NETs promoted angiogenic responses and inflammatory activation of HUVECs and increased corneal neovascularization and inflammatory response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.