Abstract
Corticosteroid-binding globulin (CBG) transports glucocorticoids in blood and is a serine protease inhibitor family member. Human CBG has a reactive center loop (RCL) which, when cleaved by neutrophil elastase (NE), disrupts its steroid-binding activity. Measurements of CBG levels are typically based on steroid-binding capacity or immunoassays. Discrepancies in ELISAs using monoclonal antibodies that discriminate between intact vs RCL-cleaved CBG have been interpreted as evidence that CBG with a cleaved RCL and low affinity for cortisol exists in the circulation. We examined the biochemical properties of plasma CBG in samples with discordant ELISA measurements and sought to identify RCL-cleaved CBG in human blood samples. Plasma CBG-binding capacity and ELISA values were consistent in arterial and venous blood draining skeletal muscle, liver and brain, as well as from a tissue (adipose) expected to contain activated neutrophils in obese individuals. Moreover, RCL-cleaved CBG was undetectable in plasma from critically ill patients, irrespective of whether their ELISA measurements were concordant or discordant. We found no evidence of RCL-cleaved CBG in plasma using a heat-dependent polymerization assay, and CBG that resists immunoprecipitation with a monoclonal antibody designed to specifically recognize an intact RCL, bound steroids with a high affinity. In addition, mass spectrometry confirmed the absence of NE-cleaved CBG in plasma in which ELISA values were highly discordant. Human CBG with a NE-cleaved RCL and low affinity for steroids is absent in blood samples, and CBG ELISA discrepancies likely reflect structural differences that alter epitopes recognized by specific monoclonal antibodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.