Abstract

Mechanical ventilation can paradoxically cause acute lung injury, which is termed ventilator-induced lung injury. Neutrophil recruitment and neutrophil elastase release play a central role in the pathogenesis of ventilator-induced lung injury including cell damage, extracellular matrix degradation and alveolar-capillary hyperpermeability. We therefore speculated that neutrophil elastase inhibition ameliorates ventilator-induced lung injury. Anesthetized C57/BL6 mice received mechanical ventilation with a high tidal volume (V T; 20 ml/kg) for 4 h. The neutrophil elastase inhibitor (sivelestat, 100 mg/kg) or saline was given intraperitoneally (i.p.) 30 min before ventilation. Sivelestat completely inhibited both neutrophil elastase and myeloperoxidase activities that were increased by ventilation, and attenuated the histopathological degree of lung damage, neutrophil accumulation and lung water content, as well as the concentration of macrophage inflammatory protein (MIP)-2, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid and serum. Moreover, mechanical ventilation increased the phosphorylation of c-Jun NH2-terminal kinase (JNK) and the expression of early growth response gene-1 (Egr-1) mRNA, and these increases were also recovered by sivelestat. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining revealed apoptotic cells mainly in alveolar epithelial cells and their numbers corresponded to histological damage. These data suggested that sivelestat could protect against ventilator-induced lung injury by suppressing apoptotic responses through mechanical stress-induced cell signaling in addition to inhibiting neutrophil chemotaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.