Abstract

BackgroundMammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein σ3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating.ResultsThe human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis.ConclusionOur findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections.

Highlights

  • Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts

  • Our findings reveal that Neutrophil elastase (NE) can facilitate reovirus infection

  • Reovirus infection of U937 cells does not require cysteine protease activity The promonocytic cell line U937 expresses large amounts of elastase [45] and provided a suitable system to analyze the role of this protease in reovirus infection

Read more

Summary

Introduction

Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. Proteolysis of the reovirus outer capsid protein σ3 is mediated by pancreatic serine proteases. Mammalian reoviruses are the prototypic members of the Reoviridae family, which includes the pathogenic rotaviruses, coltiviruses, seadornaviruses and orbiviruses. These viruses share elements of their replication cycle as well as structural features, including a non-enveloped multi-layered capsid that surrounds a segmented dsRNA genome. Mammalian reoviruses are typically associated with mild and self-limiting enteric and respiratory infections. Because reovirus attaches to cells through interactions with broadly expressed receptors, one or more subsequent steps in the viral life cycle must help to regulate host range and pathogenesis. Our recent studies suggest that one such step is proteolysis of the capsid protein σ3 [2,3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.