Abstract

The adhesion of neutrophils and other leukocytes to biomaterial surfaces is an important phenomenon in the host response to biomaterials because the number of adherent leukocytes is often related to the inflammatory response after implantation. After adhering to biomaterial surfaces, other leukocyte reactions, such as phagocytosis, respiratory burst, and protease release, may occur and result in the deterioration of the implanted biomaterial and injury to peripheral tissue. This study of neutrophil adhesion quantitatively characterizes neutrophil adhesion under well-defined laminar flow conditions using a radial flow chamber. In this rheologically well-defined system, the fluid shear rate on the surface varies continuously with radial position. This allows the study of shear-dependent behavior of neutrophil adhesion. Exploiting the variable shear rate in the radial flow chamber, the kinetics of neutrophil adhesion was obtained using automated video microscopy and image analysis to recursively acquire cell counts from multiple fields in different radial positions, and to quantify the surface density of neutrophil as a function of time. Neutrophil adhesion was studied on glass preadsorbed with fibrinogen and high-molecular-weight kininogen (HK). At a shear rate of 20 s−1, the number of adherent cells on the preadsorbed fibrinogen surface was similar to that on bare glass, and the number of adherent cells on the HK surface was less than 10% of that on the bare glass. We conclude that surfaces preadsorbed with HK are anti-adhesive to neutrophils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.