Abstract
This paper investigates the feasibility of designing a flexible fast breeder reactor from the view of neutronics. It requires that the variable breeding ratio can be achieved in operating a fast reactor without significant changes of the core, including the minimum change of fuel assembly design, the minimum change of the core configuration and the same control system arrangement in the core. The sodium cooled fast reactor is investigated. Two difficulties are overcome: (1) the different excess reactivity is well controlled for different cores, especially for the one with small breeding ratio; (2) the maximum linear power density is well controlled while the breeding ratio changes. The optimizations are done to meet the requirements. The U–Pu–Zr alloy is applied to enhance the breeding. The enrichment-zoning technique with unfixed blanket assembly loading position is searched to get acceptable power distributions when the breeding ratio changes. And the control system is designed redundantly to fulfill the control needs. Then, the achieved breeding ratio can be adjusted from 1.1 to 1.4. The reactivity coefficients, temperature distributions and preliminary safety performances are evaluated to investigate the feasibility of the new concept. All the results show that it is feasible to develop the fast reactor with flexible breeding ratios, although it still highly relies on the advancement of the coolant flow control technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.