Abstract

Linear-assembly breed-and-burn (B&B) reactors are B&B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B&B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B&B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B&B reactors is extended to apply to linear-assembly B&B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B&B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B&B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which is then used in a transition model that shows how the desired equilibrium cycle can be established. The doubling time of this fuel cycle is calculated as an example of what is achievable using B&B reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.