Abstract

The requirement for electricity increases with the growth of the human population. The existing power plants have not been able to fulfill all electricity requirements, especially in remote areas. The small long-life pressurized water reactor (PWR) is one of the solutions and innovations in nuclear technology that can produce electrical energy for a long time without refueling. This study aimed to analyze the neutronic of small long-life PWR that using Thorium-Uranium dioxide ((Th-U)O2) fuels with enriched Uranium-235 (U-235) and the addition of Gadolinium (Gd2O3) and Protactinium-231 (Pa-231) as the burnable poisons. The SRAC Code with the JENDL-4.0 nuclear data library had been used for the calculation method. In this study, the geometry of the two-dimensional (R-Z) reactor core with different fuel volume fraction was analyzed. Moreover, variations of the Uranium-235, Gadolinium, and Protactinium-231 fractions in the fuels were carried out. The result in this study was a PWR 420 MWt design using 60% Uranium dioxide fuel with enriched Uranium-235 of 10%-11%-12% and the addition of 0,0125% Gadolinium and 1,0% Protactinium-231 as the burnable poisons that could operate for thirteen years without refueling. The small long-life PWR design could produce a power density of 85,1 watts/cc with the reactivity for less than 4,6% dk/k.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call