Abstract

In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide (SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of 239Pu, physical characteristics, temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call