Abstract

This work presents the neutronic analysis of fuel design for a long-life core in a pressurized water reactor (PWR). In order to achieve a high burnup, a high enrichment U-235 is traditionally considered without special constraints against proliferation. To counter the excess reactivity, Erbium was selected as a burnable poison due to its good depletion performance. Calculations based on a standard fuel model were carried out for the PWR type core using SRAC code system. A parametric study was performed to quantify the neutronically achievable burnup at a number of enrichment levels and for a numerous geometries covering a wide design space of lattice pitch. The fuel temperature and coolant temperature reactivity coefficients as well as the small and large void reactivity coefficients are also investigated. It was found that it is possible to achieve sufficient criticality up to 100 GWd/tHM burnup without compromising the safety parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.